Rotorcraft Policy and Guidance for Health Usage Monitoring System (HUMS)

Liz Brandli (presenter Jorge Castillo)
EASA Rotorcraft Symposium: Dec 4-5, 2015
Agenda

- HUMS FAA Guidance
- HUMS Certification Approach
- HUMS Research
 - HUMS Research Roadmap
 - HUMS Research Conclusion
 - Current HUMS Research Reports
- AC MG-15 Update
HUMS FAA Guidance

- Health Usage Monitoring System (HUMS) is not a required system
- FAA has no plans for mandating HUMS
- FAA has certification guidance for installations via STC, TC
 - AC 27-1B & 29-2C. Change 3, Section MG 15
 - AC was developed by Rotorcraft Health Usage Monitoring System Advisory Group (1999)
 - Committee Members
 - FAA Aircraft Certification
 - European Joint Aviation Authorities (JAA)
 - US and European Industry Groups (AIA & AECMA)
HUMS Certification Approach (1)

Onboard Systems

INSTALLATION

CREDIT AND VALIDATION

INSTRUCTIONS FOR CONTINUED AIRWORTHINESS

Algorithms

Hardware/Software
- Maintenance
- Support Systems
 - Interface
MG -15 is comprised of three parts:

- **Installation**
 - Qualification of Airborne System
 - Qualification of the Ground Equipment
 - Allows approval for installation before Credit Validation
 - Must retain traditional maintenance program (i.e. no “Credit” provided yet)

- **Credit Validation**
 - Validates that HUMS Functions as Intended
 - HUMS “Credit” granted after validation

- **Instructions For Continued Airworthiness (ICA)**
 - HUMS operating instructions, training and controlled introduction to service
HUMS Research (1)

- Roadmap developed in 2005
- Validate/Enhance HUMS Advisory Circular (AC)
- Assist in maturing HUMS technology
HUMS Research (2)

- AC Compliance Demonstration
 - Mock certification using AC MG15
 - Direct load measurement – direct evidence
 - Military usage vs Civil usage
 - Flight regime recognition – indirect evidence
 - Validate methodologies (Sikorsky vs Army)
HUMS R&D Roadmap

HUMS R&D Areas and Tasks

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
<th>Short</th>
<th>Long Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HUMS AC Requirement Compliance Demonstration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>HUMS Development and HUMS-Equipped Flight Testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Usage Monitoring and Flight Regime Recognition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Direct Loads Monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Maint Credits Validation (Indirect Load Measurement)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Maint Credits Validation (Direct Load Measurement)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Operational Development of HUMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Hardware</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Sensor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Airborne Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Ground Station and Peripherals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>Software</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>Data Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>Diagnostics and Monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>Maintenance Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>Commercial Validation of HUMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>Algorithms and Methodologies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>Safety Monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>Structural Usage Monitoring & Credit Validation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>Diagnostics, Health, & Prognostics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>Onboard Warnings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>Responses and Procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>Flight and Ground Crew</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HUMS Research Wrap-Up

- 10 year research program (FY06-FY15) developed to validate MG-15
- Research conducted with US Army AEH, ARL and CERDEC, GE-Smiths, GoodRich, NASA Glenn, ERAU, Acellent, HAI, and Sikorsky
- Research ended in FY15 with a revision to the AC expected in FY 2016
- FAA attended AHS CBM & HUMS meeting in Huntsville February 2015 to wrap up research program
 - FAA/Researchers meeting held for recommendations to AC-MG15 update.
Current HUMS Research Reports

- Current HUMS Reports to be published:

 • Development and Validation of Structural Usage and Loads Monitoring Methods for Use in Determining Rotorcraft Usage Credits (Sikorsky)

 • Application of Rotorcraft Structural Usage and Loads Monitoring Methods for Determining Usage Credits (Sikorsky)

 • Accuracy Assessment of HUMS Regime Recognition Algorithms (HAI)

 • Results of Health and Usage Monitoring System Fleet Data Analysis for Usage Credits (AED)

 • Summary of US Army Seeded Fault Tests for Helicopter Bearings (AED)

 • Rotorcraft Maneuver-To-Maneuver Damage with Structural Usage Monitoring System (SUMS) Data (AED)

 • Rotorcraft Spectrum Reliability Comparisons by Endurance Limit Adjustments (AED)
AC MG-15 Update (1)

- Team Scope
 - Review HUMS research reports for applicability to the AC 29-2 AC MG-15.
 - Provide updates based on research, certification experience, and EASA’s recently issued AMC 29.1465

- Team Members
 - Matt Fuller – Sponsor for Research
 - Robert Grant – Structures
 - Liz Brandli – Software
 - Mark Wiley – Electrical
 - Andy Shaw – Avionics
 - Matt Wilbanks – Mechanical Systems
 - Rao Edpunganti / Eric Haight – Power-plant Systems
The structure of the draft updates to the AC has essentially remained the same ... including these major topical areas:

- Installation
- Ground-Based System Certification Guidance
- Credit Validation
- Instructions for Continued Airworthiness
– AC proposed changes will include:

 • Incorporation by reference EASA AMC 29.1465 for VHM systems classified as “Minor”
 • Installation
 – Clarification on Catastrophic Systems and Mitigating Actions
 – Systems Safety FHA and DAL Assignments
 – Examples of Systems with Different DAL’s
 – Clarification on “Credit” definitions and “Usage”
 – 27/29.1309 guidance for software and airborne electronic hardware
AC MG-15 Update (3)

- Ground-based system proposed updates:
 - Removed Independent Verification and DO-178 requirements
 - Added requirements for Data Management (Data Quality, Data Integrity, Data Processing, and Data Security)
 - Added guidance for Ground-based tools and qualification based on Criticality and output dependence using RTCA DO-330
Credit Validation proposed AC updates:

- **Usage Credit**
 - Approach used in HUMS for Usage Credit is to replace the CWC usage with the actual usage and recalculate the Remaining Useful Life (RUL)
 - Regime Recognition Accuracy Issues
 - Reliability impact of using actual usage

- **Added Usage Credit Methodologies**
 - CWC spectrum refinement (part number approach)
 - Individual component damage assessment (Serial Number approach)

- **Regime Recognition Algorithms**
 - Validation requirements
 - Accuracy requirements

- **Validation of Structural Usage Monitoring Systems (SUMS)**

Note: The AC does not contain guidance for Regime Recognition Accuracy requirements.

Note: The AC does not address reliability impacts associated to using usage monitoring systems in deriving information such as fatigue life RUL calculation.
AC MG-15 Schedule

- Initial Draft AC under FAA Management Review
- FAA Internal Review June 2016
- Public Comment Nov 2016